Human DNA polymerase delta double-mutant D316A;E318A interferes with DNA mismatch repair in vitro
نویسندگان
چکیده
DNA mismatch repair (MMR) is a highly-conserved DNA repair mechanism, whose primary role is to remove DNA replication errors preventing them from manifesting as mutations, thereby increasing the overall genome stability. Defects in MMR are associated with increased cancer risk in humans and other organisms. Here, we characterize the interaction between MMR and a proofreading-deficient allele of the human replicative DNA polymerase delta, PolδD316A;E318A, which has a higher capacity for strand displacement DNA synthesis than wild type Polδ. Human cell lines overexpressing PolδD316A;E318A display a mild mutator phenotype, while nuclear extracts of these cells exhibit reduced MMR activity in vitro, and these defects are complemented by overexpression or addition of exogenous human Exonuclease 1 (EXO1). By contrast, another proofreading-deficient mutant, PolδD515V, which has a weaker strand displacement activity, does not decrease the MMR activity as significantly as PolδD316A;E318A. In addition, PolδD515V does not increase the mutation frequency in MMR-proficient cells. Based on our findings, we propose that the proofreading activity restricts the strand displacement activity of Polδ in MMR. This contributes to maintain the nicks required for EXO1 entry, and in this manner ensures the dominance of the EXO1-dependent MMR pathway.
منابع مشابه
DNA polymerase delta is required for human mismatch repair in vitro.
HeLa nuclear extract was resolved into a depleted fraction incapable of supporting mismatch repair in vitro, and repair activity was restored upon the addition of a purified fraction isolated from HeLa cells by in vitro complementation assay. The highly enriched complementing activity copurified with a DNA polymerase, and the most pure fraction contained DNA polymerase delta but was free of det...
متن کاملHeteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1.
Recombination between moderately divergent DNA sequences is impaired compared with identical sequences. In yeast, an HO endonuclease-induced double-strand break can be repaired by single-strand annealing (SSA) between flanking homologous sequences. A 3% sequence divergence between 205-bp sequences flanking the double-strand break caused a 6-fold reduction in repair compared with identical seque...
متن کاملDNA polymerases required for repair of UV-induced damage in Saccharomyces cerevisiae.
The ability of yeast DNA polymerase mutant strains to carry out repair synthesis after UV irradiation was studied by analysis of postirradiation molecular weight changes in cellular DNA. Neither DNA polymerase alpha, delta, epsilon, nor Rev3 single mutants evidenced a defect in repair. A mutant defective in all four of these DNA polymerases, however, showed accumulation of single-strand breaks,...
متن کاملSpontaneous frameshift mutations in Saccharomyces cerevisiae: accumulation during DNA replication and removal by proofreading and mismatch repair activities.
The accumulation of frameshift mutations during DNA synthesis is determined by the rate at which frameshift intermediates are generated during DNA polymerization and the efficiency with which frameshift intermediates are removed by DNA polymerase-associated exonucleolytic proofreading activity and/or the postreplicative mismatch repair machinery. To examine the relative contributions of these f...
متن کاملProcessing of O6-methylguanine by mismatch correction in human cell extracts
Human cell extracts perform an aberrant form of DNA synthesis on methylated plasmids [1], which represents processing of O6-methylguanine (O6-meG). Here, we show that extracts of colorectal carcinoma cells with defects in the mismatch repair proteins that normally correct replication errors do not carry out this synthesis. hMSH2-defective LoVo cell extracts (hMSH for human MutS homologue) perfo...
متن کامل